Jump to content

Dennis Gabor

From Wikipedia, the free encyclopedia

Dennis Gabor
Gabor in 1971
Born
Dénes Günszberg

(1900-06-05)5 June 1900
Died9 February 1979(1979-02-09) (aged 78)
London, England
CitizenshipHungary
United Kingdom (1946–1979)
Alma materTechnische Universität Berlin
Technical University of Budapest
Known for
Spouse
Marjorie Louise Butler
(m. 1936)
Awards
Scientific career
FieldsPhysics
InstitutionsImperial College London
British Thomson-Houston
Doctoral students

Dennis Gabor (/ˈɡɑːbɔːr, ɡəˈbɔːr/ GAH-bor, gə-BOR;[3][4][5][6] Hungarian: Gábor Dénes, Hungarian: [ˈɡaːbor ˈdeːnɛʃ]; 5 June 1900 – 9 February 1979) was a Hungarian-British physicist who received the Nobel Prize in Physics in 1971 for his invention of holography.[7][8][9][10][11][12] He obtained British citizenship in 1946 and spent most of his life in England.[13][14][15]

Life and career

[edit]

Gabor was born as Günszberg Dénes, into a Jewish family in Budapest, Hungary. In 1900, his family converted to Lutheranism.[16] Dennis was the first-born son of Günszberg Bernát and Jakobovits Adél. Despite having a religious background, religion played a minor role in his later life and he considered himself agnostic.[17] In 1902, the family received permission to change their surname from Günszberg to Gábor. He served with the Hungarian artillery in northern Italy during World War I.[18]

He began his studies in engineering at the Budapest University of Technology and Economics in 1918, later in Germany, at the Technische Hochschule Charlottenburg in Berlin, now known as Technische Universität Berlin.[19] At the start of his career, he analysed the properties of high voltage electric transmission lines by using cathode-beam oscillographs, which led to his interest in electron optics.[19] Studying the fundamental processes of the oscillograph, Gabor was led to other electron-beam devices such as electron microscopes and TV tubes. He eventually wrote his PhD thesis on Recording of Transients in Electric Circuits with the Cathode Ray Oscillograph in 1927, and worked on plasma lamps.[19]

In 1933 Gabor fled from Nazi Germany, where he was considered Jewish, and was invited to Britain to work at the development department of the British Thomson-Houston company in Rugby, Warwickshire. During his time in Rugby, he met Marjorie Louise Butler, and they married in 1936. He became a British citizen in 1946,[20] and it was while working at British Thomson-Houston in 1947 that he invented holography, based on an electron microscope, and thus electrons instead of visible light.[21] He experimented with a heavily filtered mercury arc light source.[19] The earliest visual hologram was only realised in 1964 following the 1960 invention of the laser, the first coherent light source. After this, holography became commercially available.

Gabor's research focused on electron inputs and outputs, which led him to the invention of holography.[19] The basic idea was that for perfect optical imaging, the total of all the information has to be used; not only the amplitude, as in usual optical imaging, but also the phase. In this manner, a complete holo-spatial picture can be obtained.[19] Gabor published his theories of holography in a series of papers between 1946 and 1951.[19]

Gabor also researched how human beings communicate and hear; the result of his investigations was the theory of granular synthesis, although Greek composer Iannis Xenakis claimed that he was actually the first inventor of this synthesis technique.[22] Gabor's work in this and related areas was foundational in the development of time–frequency analysis.

In 1948 Gabor moved from Rugby to Imperial College London, and in 1958 became professor of Applied Physics until his retirement in 1967. His inaugural lecture on 3 March 1959, 'Electronic Inventions and their Impact on Civilisation' provided inspiration for Norbert Wiener's treatment of self-reproducing machines in the penultimate chapter in the 1961 edition of his book Cybernetics.

As part of his many developments related to CRTs, in 1958 Gabor patented a new flat screen television concept. This used an electron gun aimed perpendicular to the screen, rather than straight at it. The beam was then directed forward to the screen using a series of fine metal wires on either side of the beam path. The concept was significantly similar to the Aiken tube, introduced in the US the same year. This led to a many-years patent battle which resulted in Aiken keeping the US rights and Gabor the UK. Gabor's version was later picked up by Clive Sinclair in the 1970s, and became a decades-long quest to introduce the concept commercially. Its difficult manufacturing, due to the many wires within the vacuum tube, meant this was never successful. While looking for a company willing to try to manufacture it, Sinclair began negotiations with Timex, who instead took over production of the ZX81.[23]

In 1963 Gabor published Inventing the Future which discussed the three major threats Gabor saw to modern society: war, overpopulation and the Age of Leisure. The book contained the now well-known expression that "the future cannot be predicted, but futures can be invented." Reviewer Nigel Calder described his concept as, "His basic approach is that we cannot predict the future, but we can invent it..." Others such as Alan Kay, Peter Drucker, and Forrest Shaklee have used various forms of similar quotes.[24] His next book, Innovations: scientific, technological, and social which was published in 1970, expanded on some of the topics he had already earlier touched upon, and also pointed to his interest in technological innovation as mechanism of both liberation and destruction.

Gabor in 1971

In 1971 he was the single recipient of the Nobel Prize in Physics with the motivation "for his invention and development of the holographic method"[25] and presented the history of the development of holography from 1948 in his Nobel lecture.

While spending much of his retirement in Italy at Lavinio Rome, he remained connected with Imperial College as a senior research fellow and also became staff scientist of CBS Laboratories, in Stamford, Connecticut; there, he collaborated with his lifelong friend, CBS Labs' president Dr. Peter C. Goldmark in many new schemes of communication and display. One of Imperial College's new halls of residence in Prince's Gardens, Knightsbridge is named Gabor Hall in honour of Gabor's contribution to Imperial College. He developed an interest in social analysis and published The Mature Society: a view of the future in 1972.[26] He also joined the Club of Rome and supervised a working group studying energy sources and technical change. The findings of this group were published in the report Beyond the Age of Waste in 1978, a report which was an early warning of several issues that only later received widespread attention.[27]

Following the rapid development of lasers and a wide variety of holographic applications (e.g., art, information storage, and the recognition of patterns), Gabor achieved acknowledged success and worldwide attention during his lifetime.[19] He received numerous awards besides the Nobel Prize.

Gabor died in a nursing home in South Kensington, London, on 9 February 1979. In 2006 a blue plaque was put up on No. 79 Queen's Gate in Kensington, where he lived from 1949 until the early 1960s.[28]

Personal life

[edit]

On 8 August 1936, he married Marjorie Louise Butler. They did not have any children.

Publications

[edit]
  • The Electron Microscope (1934)
  • Inventing the Future (1963)
  • Innovations: Scientific, Technological, and Social (1970)
  • The Mature Society (1972)
  • Proper Priorities of Science and Technology (1972)
  • Beyond the Age of Waste: A Report to the Club of Rome (1979, with U. Colombo, A. King en R. Galli)

Awards and honors

[edit]
[edit]

See also

[edit]

References

[edit]
  1. ^ a b Allibone, T. E. (1980). "Dennis Gabor. 5 June 1900 – 9 February 1979". Biographical Memoirs of Fellows of the Royal Society. 26: 106. doi:10.1098/rsbm.1980.0004. S2CID 53732181.
  2. ^ Shewchuck, S. (December 1952). "SUMMARY OF RESEARCH PROGRESS MEETINGS OF OCT. 16, 23 AND 30, 1952". Lawrence Berkeley National Laboratory: 3.
  3. ^ "Gabor". The American Heritage Dictionary of the English Language (5th ed.). HarperCollins. Retrieved 26 July 2019.
  4. ^ "Gabor". Collins English Dictionary. HarperCollins. Retrieved 26 July 2019.
  5. ^ "Gabor, Dennis". Lexico UK English Dictionary. Oxford University Press. Archived from the original on 25 June 2021.
  6. ^ "Gabor". Merriam-Webster.com Dictionary. Merriam-Webster. Retrieved 26 July 2019.
  7. ^ Ash, Eric A. (1979). "Dennis Gabor, 1900–1979". Nature. 280 (5721): 431–433. Bibcode:1979Natur.280..431A. doi:10.1038/280431a0. PMID 379651.
  8. ^ Gabor, Dennis (1944). The electron microscope : Its development, present performance and future possibilities. London. [ISBN missing]
  9. ^ Gabor, Dennis (1963). Inventing the Future. London : Secker & Warburg. [ISBN missing]
  10. ^ Gabor, Dennis (1970). Innovations: Scientific, Technological, and Social. London: Oxford University Press. [ISBN missing]
  11. ^ Gabor, Dennis (1972). The Mature Society. A View of the Future. London : Secker & Warburg. [ISBN missing]
  12. ^ Gabor, Dennis; and Colombo, Umberto (1978). Beyond the Age of Waste: A Report to the Club of Rome. Oxford : Pergamon Press. [ISBN missing]
  13. ^ "GÁBOR DÉNES". sztnh.gov.hu (in Hungarian). Szellemi Tulajdon Nemzeti Hivatala. 25 April 2016. Retrieved 19 July 2021.
  14. ^ "Gábor Dénes". itf.njszt.hu (in Hungarian). Neumann János Számítógép-tudományi Társaság. 28 August 2019. Retrieved 19 July 2021.
  15. ^ Wasson, Tyler; Brieger, Gert H. (1987). Nobel Prize Winners: An H. W. Wilson Biographical Dictionary. H. W. Wilson. p. 359. ISBN 0-8242-0756-4.
  16. ^ Dennis Gabor Biography. Bookrags.com (2 November 2010). Retrieved on 7 September 2017.
  17. ^ Brigham Narins (2001). Notable Scientists from 1900 to the Present: D-H. Gale Group. p. 797. ISBN 978-0-7876-1753-0. Although Gabor's family became Lutherans in 1918, religion appeared to play a minor role in his life. He maintained his church affiliation through his adult years but characterized himself as a "benevolent agnostic".
  18. ^ Johnston, Sean (2006). "Wavefront Reconstruction and beyond". Holographic Visions. OUP Oxford. p. 17. ISBN 978-0-19-857122-3.
  19. ^ a b c d e f g h Bor, Zsolt (1999). "Optics by Hungarians". Fizikai Szemle. 5: 202. Bibcode:1999AcHA....5..202Z. ISSN 0015-3257. Retrieved 5 June 2010.
  20. ^ Wasson, Tyler; Brieger, Gert H. (1987). Nobel Prize Winners: An H. W. Wilson Biographical Dictionary. H. W. Wilson. p. 359. ISBN 0-8242-0756-4.
  21. ^ GB685286 GB patent GB685286, British Thomson-Houston Company, published 1947 
  22. ^ Xenakis, Iannis (2001). Formalized Music: Thought and Mathematics in Composition. Vol. 9th (2nd ed.). Pendragon Pr. pp. preface xiii. ISBN 1-57647-079-2.
  23. ^ Adamson, Ian; Kennedy, Richard (1986). Sinclair and the 'sunrise' Technology. Penguin. pp. 91–92.
  24. ^ "We Cannot Predict the Future, But We Can Invent It". quoteinvestigator.com. 27 September 2012. Archived from the original on 26 December 2013. Retrieved 3 May 2015.
  25. ^ "The Nobel Prize in Physics 1971". nobelprize.org.
  26. ^ IEEE Global History Network (2011). "Dennis Gabor". IEEE History Center. Retrieved 14 July 2011.
  27. ^ Gabor, Dennis; Colombo, Umberto; King, Alexander; Galli, Riccardo (1978). Club of Rome: Beyond the Age of Waste. Pergamon Press. ISBN 0-08-021834-2.
  28. ^ "Blue Plaque for Dennis Gabor, inventor of Holograms". Government News. 1 June 2006. Archived from the original on 2 December 2013. Retrieved 23 November 2013.
  29. ^ "Franklin Laureate Database – Albert A. Michelson Medal Laureates". Franklin Institute. Archived from the original on 6 April 2012. Retrieved 14 June 2011.
  30. ^ "Dennis Gabor Award". SPIE. 2010. Archived from the original on 25 October 2015. Retrieved 4 June 2010.
  31. ^ "The Gabor Medal (1989)". Royal Society. 2009. Retrieved 4 June 2010.
  32. ^ Eastside Halls. imperial.ac.uk
  33. ^ "Dennis Gabor's birth celebrated by Google doodle". The Telegraph. London. 5 June 2010. Retrieved 5 June 2010.
  34. ^ Wallace, David Foster (1996). "Infinite Jest". New York: Little, Brown and Co.: 12. {{cite journal}}: Cite journal requires |journal= (help)
[edit]